
Copeland et al. Animal Microbiome            (2025) 7:41  
https://doi.org/10.1186/s42523-025-00408-w

RESEARCH

Honey bee (Apis mellifera) queen quality: 
host-microbial transcriptomes exploring 
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Abstract 

Understanding the biological mechanisms underlying extreme lifespan variation within species remains a funda-
mental challenge in aging research. Here, we investigated the role of gut microbiota and age in honey bee (Apis 
mellifera) queens combining 16S rRNA gene sequencing and transcriptomics. Analysis of 40 queen hindguts revealed 
that Commensalibacter melissae (Alpha 2.1) relative abundance was significantly higher in young queens compared 
to old queens. Using queens with the highest and lowest C. melissae relative abundance, RNA sequencing identified 
1451 differentially expressed genes associated with C. melissae abundance, twice the number associated with age 
alone (719 genes). Queens with high C. melissae abundance showed distinct transcriptional profiles related to stress 
response, protein homeostasis, and longevity-regulating pathways, particularly genes involved in oxidative stress 
response and cellular maintenance. Our analysis revealed complex relationships between age, C. melissae abundance, 
and gene expression patterns, suggesting that multiple interacting factors contribute to queen quality. These find-
ings contribute to our understanding of host-microbe interactions in honey bee queens and highlight the intricate 
relationship between gut microbiota composition and host physiology in honey bees.
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Introduction
Honey bees (Apis mellifera) are essential pollinators in 
both natural ecosystems and agricultural settings, play-
ing a crucial role in global food security and biodiversity. 

At the heart of every honey bee colony is the queen, 
whose extraordinary longevity and reproductive output 
are key to colony success [61]. In the somewhat recent 
past, queens were renowned for their exceptional longev-
ity and in extreme cases living up to 8  years compared 
to the typical 4–6 weeks lifespan of workers [54]. This 
striking difference in lifespan between queens and work-
ers has long intrigued researchers, and while queen qual-
ity is known to be affected by various factors, including 
genetics [36, 56], matedness [18, 67], and environmental 
conditions [50], the gut microbiome is a relatively under-
studied factor that may contribute to queen quality and 
longevity, with some recent work beginning to explore 
this area [3, 15, 20, 22]. A survey of American beekeepers 
[69] identified queen-related issues as a major problem 

Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025. Open 
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Animal Microbiome

*Correspondence:
Duan C. Copeland
duan.copeland@usda.gov
Kirk E. Anderson
kirk.anderson@usda.gov
1 USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, 
AZ 85719, USA
2 Department of Entomology and Center for Insect Science, University 
of Arizona, Tucson, AZ 85721, USA
3 USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research 
Center, 64 Nowelo St., Hilo, HI 96720, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42523-025-00408-w&domain=pdf


Page 2 of 16Copeland et al. Animal Microbiome            (2025) 7:41 

for the sustainability of commercial beekeeping. In 
response, commercial operations have adopted system-
atic queen replacement practices, often sourcing queens 
from Hawai’i when they are seasonally unavailable from 
California. This shift to year-round queen breeding has 
been supported by increased pollination fees, facilitating 
an industry-wide strategy of annual queen replacement. 
In a large longitudinal study of queen quality [58], we 
found that first-year queens outperformed second-year 
queens, validating beekeepers’queen replacement prac-
tices. Furthermore, we discovered that the gut microbi-
ome of recently mated queens contained higher levels of 
Alpha 2.1 Commensalibacter, an acetic acid bacteria that 
depletes rapidly with age [3].

The gut microbiome is increasingly recognized for its 
role in modulating host physiology, metabolism, and 
immune function in honey bees [2, 9, 31]. The queen’s 
gut microbiome differs significantly from that of worker 
bees, with queens harboring a less diverse but highly pre-
dictable and specialized bacterial community [3, 20, 42, 
66]. Among the simple microbial communities inhabit-
ing the queen gut, Commensalibacter melissae (previ-
ously known as Alpha 2.1 [11, 24, 52]) has emerged as 
a key symbiont with potential implications for queen 
health and longevity. As an acetic acid bacterium, C. 
melissae typically thrives in carbohydrate-rich, acidic 
environments [25], that may change as queens age. Pre-
vious studies have demonstrated that the relative and 
absolute abundance of C. melissae decreases significantly 
throughout the alimentary tract as queens age [3]. It has 
also been shown that C. melissae decreases rapidly in 
abundance when queens are placed into a queen bank, an 
environment of low metabolic demand where queens are 
fed by workers, but do not lay eggs [20].These results sug-
gest a possible link between C. melissae abundance and 
queen metabolism associated with aging.

In this study, we define queen quality as encompass-
ing several measurable aspects including mating success, 
reproductive output, longevity, colony performance, and 
molecular indicators of cellular health. While queen qual-
ity includes multiple factors and can be difficult to quan-
tify [1], we specifically focus on age-related aspects of 
quality as indicated by oxidative stress markers and gene 
expression profiles. Similarly, perhaps the queen’s distinct 
microbiome, coupled with the unique diet of royal jelly, 
contributes to her quality and extended lifespan through 
enhanced metabolic efficiency and improved immune 
function [3]. Understanding these microbiome-mediated 
mechanisms could not only illuminate the evolutionary 
basis of caste-specific longevity but also provide valuable 
insights for honey bee health management and conserva-
tion efforts. Currently, queen failures consistently rank as 
one of the most prominent causes of yearly colony losses 

across the US [5, 13]. To combat these losses, beekeepers 
often replace queens annually, as younger queens (con-
taining a greater abundance of C. melissae) generally out-
perform older queens in terms of egg production [58].

Transcriptional analyses have proven valuable for 
understanding honey bee biology, revealing how nutri-
tion affects worker development [23] and identifying 
key gene expression differences between queens and 
workers [16, 32]. These studies demonstrate the util-
ity of transcriptomics for understanding age-related and 
developmental processes in honey bees. In this study, we 
combined 16S rRNA gene sequencing and transcriptom-
ics to explore the role that C. melissae has in modulating 
host queen physiology with respect to age. We use pro-
tein carbonyl accumulation in the fat body as a biomarker 
of biological aging, complemented by transcriptional sig-
natures that reflect physiological status independent of 
chronological age. We collaborated with a commercial 
beekeeping operation in Illinois to select a cohort of 40 
mixed aged queens. We analyzed C. melissae abundance 
and gene expression profiles of first year versus second 
year queens. We explored differences in gene expression 
patterns and fat body carbonyl accumulation to provide 
insights into interactions between the gut microbiome 
and age of honey bee queens. We show that C. melissae 
abundance is associated with distinct transcriptional pro-
files related to stress response and cellular maintenance, 
suggesting this symbiont may play a key role in queen 
health and longevity. Understanding these interactions 
could pave the way for novel strategies to enhance queen 
longevity and improve overall colony performance.

Methods
Queen sampling
Queens were sourced from two locations: the USDA-
ARS Carl Hayden Bee Research Center in Arizona (n 
= 13) and a commercial beekeeping operation in Illi-
nois (n = 27). Arizona queens were all established and 
had survived more than 1 year in their colonies. Illinois 
queens represented a mixed-age population, consisting 
of both newly introduced queens (requeened in spring 
2023, April–May) and older queens that had not been 
requeened that spring, though natural supersedure could 
not be ruled out. All queens were sampled in June 2023 
from robust double-deep colonies. The selected colonies 
were highly productive with strong populations, often 
reaching space limitations for both brood production 
and honey storage. To ensure sample quality and consist-
ency, we specifically selected queens from thriving colo-
nies and deliberately excluded any colonies showing signs 
of queen failure or irregular egg-laying patterns. Forty 
queens in total were collected into sterile 2.0-ml tubes 
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and immediately frozen on dry ice and stored at − 80 °C 
for nucleic acid extraction.

Dissections and tissue collection
Queens were pinned through the thorax in 70% ethanol 
to wash and aid in dissection. Micro-dissection scissors 
were used to cut through the sides of the abdomen to 
access the digestive tract. The entire digestive tract was 
removed and floated in ethanol to manually separate the 
gut tissues with dissection tweezers. C. melissae is most 
abundant in the hindgut, so we targeted the ileum and 
rectum together for analysis. The abdominal fat body was 
extracted as a single unit for use in gene expression and 
protein oxidation assays to assess biological aging.

Nucleic acid extractions
Queen fat body, ileum, and rectum tissues were each 
bead-beaten separately in 1X TE buffer for 2 min at 30-s 
intervals and centrifuged at 30 s at 3000 rcf to recover the 
supernatant. To extract nucleic acids from the gut tissues 
(DNA and RNA simultaneously), we used Qiagen AllPrep 
PowerViral DNA/RNA Kit (Qiagen, Hilden, Germany) 
following the manufacturer’s protocol and methodology 
also reported in [21]. 20 µL of ileum and 20 µL rectum 
elution from the extractions were then pooled into hind-
gut samples for downstream sequencing and analysis.

Carbonyl protein oxidation assay for biological age 
assessment
The fat body supernatant fraction was used in a protein 
oxidation assay to quantify the accumulation of pro-
tein carbonyl groups associated with oxidative stress 
and aging [57], as in [21]. We used this method as a 
biomarker of biological aging based on the established 
relationship between oxidative stress and the aging pro-
cesses [34, 37], measuring protein carbonyl accumula-
tion in fat body tissue as a validated biomarker of aging 
in honey bees, as established in our previous work [3, 
21]. This method provides an objective measure of bio-
logical aging that correlates with chronological age but 
also accounts for individual variation in aging rates. 
For queens from the Illinois commercial operation, we 
used the operator’s records of queen introduction dates 
to supplement our carbonyl data, categorizing queens 
as’young’(introduced in spring 2023, with lower car-
bonyl levels) or’old’(introduced before spring 2023, with 
higher carbonyl levels). The carbonyl assay was particu-
larly valuable for identifying cases where biological age 
did not align with chronological records, potentially due 
to natural supersedure events that occurred without bee-
keeper intervention. Protein oxidation was expressed as 
nanomoles of carbonyl groups per mg of protein.

DNA sequencing and 16S rRNA gene community analysis
DNA from gut tissues was amplified in a single step pro-
cedure to amplify full-length 16S rRNA (V1-V9) using 
degenerate primers 27 F (GCATC/barcode/AGR GTT 
YGATYMTGG CTC AG) and 1492R (GCATC/barcode/
RGY TAC CTT GTT ACG ACT T). PCR was performed 
with Q5 2 × Hot Start High-Fidelity Master Mix (New 
England Biolabs) using the following conditions: 98 °C 30 
s; 98 °C 10 s, 55 °C 30 s, and 72 °C 2 min for 22 cycles; 
final extension of 72 °C for 10 min. Reactions (30 µL) 
were performed following manufacturer recommended 
master mix concentrations, with primer concentrations 
of 250 nM. Positive (ZymoBiomics Microbial Community 
DNA Standard; Zymo Research) and negative, non-tem-
plate controls were included as process controls. After 
PCR amplification, target amplicons were purified from 
residual primers and primer-dimer using an AMPure 
bead cleanup and DNA concentrations were determined 
using a Qubit fluorometer (Thermo Fisher). Samples 
were then pooled (~ 3 ng per sample) and were prepared 
for sequencing by generating a SMRTbell library with a 
Pacific Biosciences SMRTbell prep kit 2.0 using manufac-
turer suggested inputs and procedures. Amplicons were 
sequenced on a single Pacific Biosciences 8M SMRT Cell 
on a PacBio Sequel IIe (Pacific Biosciences) at USDA-
ARS PBARC (Hilo, HI). After sequencing, circular con-
sensus sequences from the subreads were obtained using 
the SMRTLink v8.0 software.

Full length 16S rRNA gene sequence data were pro-
cessed using MOTHUR v.1.43 [60] according to previ-
ously published protocols [21]. Briefly, sequence barcodes 
(Table S1) were removed using the ‘fastq.info’ command. 
Next ‘screen.seqs’ was used to remove ambiguous bases 
with maxambig = 0. Unique sequences were generated 
using the ‘unique.seqs’ command, followed by the gen-
eration of a count file containing group information using 
the ‘count.seqs’ command. Sequences were aligned to 
the full-length 16S rRNA BEExact database [27] using 
the ‘align.seqs’ command. Sequences were filtered to 
remove overhangs at both ends and gaps using ‘filter.seqs’. 
The unique.seqs command was repeated to remove new 
redundancies from filtering. A precluster step using ‘pre.
cluster’ was performed before using the ‘chimera.vsearch’ 
command [59] to identify chimeric sequences. The com-
mand ‘remove.seqs’ was used to remove the identified 
chimeric sequences. Next, sequences were classified at 
the unique level with the BEExact database using ‘classify.
seqs’ command. Sequences not of bacterial origin (fungi, 
archaea, mitochondria, and chloroplasts) were removed 
using the ‘remove.lineage’ command. Unique sequences 
within our count table that were single or doubletons 
(having only one or two members) were removed using 
the AWK command in UNIX. Next, we utilized the ‘list.
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seqs’ and ‘get.seqs’ commands to generate inputs for our 
distance matrix. The distance matrix was constructed for 
the aligned sequences using the ‘dist.seqs’ command. Fol-
lowing this, we employed the ‘cluster’ command to group 
the sequences into unique operational taxonomic units 
(OTUs), generated a shared file with the ‘make.shared’ 
command, and assigned taxonomic classifications to each 
OTU using the ‘classify.otu’ command. Unique sequences 
were consolidated at the species level using the ‘merge.
otus’ command.

The 16 most abundant operational taxonomic units 
(OTUs) and a sum of remaining OTUs were normalized 
by qPCR BactQuant [47] absolute abundances by first 
calculating the proportion of each OTU by dividing the 
raw read count into the total number of sequences per 
sample. Each ratio was multiplied by the total BactQuant 
16S rRNA gene copies qPCR for each sample. Next, each 
OTU was corrected for 16S gene copies per bacterial cell; 
16S rRNA gene copy number were assigned based on the 
exact match or closest taxonomic representative [65]. 
The summed column of remaining OTUs were assigned 
4.2 gene copies, the mean value of 16S rRNA gene copy 
number in bacteria [70]. Next, the data were CLR-trans-
formed using the software CoDaPack [19].

Total bacterial quantification
Using purified total DNA, we quantified total bacte-
rial abundance for the hindgut using a quantitative PCR 
(qPCR) assay of the 16 rRNA gene [47]. We created a 
standard curve using a tenfold serial dilution series of 
a plasmid standard containing a full-length Escheri-
chia coli 16S rRNA gene sequence. We amplified a 466 
bp fragment in the V3–V4 region of the 16S rRNA gene 
using universal primer pair (5′-CCT ACG GGDGGC 
WGC A-3′ and 5′-GGA CTA  CHVGGGTMTCT AAT 
C-3′). PCR reactions were performed in triplicate on a 
BioRad CFX96 (Biorad, Hercules, California, US) as fol-
lows: 12 μl reactions containing 9  μl of iTaq Universal 
SYBR Green Supermix (BioRad, Hercules, California, 
US), 0.5 μl forward primer, 0.5 μl reverse primer, and 2 μl 
of DNA template. The cycling conditions were 95 °C for 
3 min followed by 40 cycles of 95 °C for 10 s and 60 °C for 
60 s. The qPCR results were expressed as the total num-
ber of 16S rRNA gene copies per DNA extraction (200 μl 
volume elution).

RNA sequencing and transcriptomic analysis
RNA from extracted samples was processed for sequenc-
ing by depleting the rRNA from samples using a RiboF-
ree cDNA Kit (Zymo Research). Samples were pooled in 
equimolar concentrations and libraries were prepared for 
sequencing using an Adept Rapid PCR-Plus Kit (Element 
Biosciences). Libraries were sequenced on an Element 

Biosciences AVITI sequencer using an AVITI 2 × 150 
Cloudbreak High Output sequencing kit at USDA-ARS 
PBARC. One queen sample dropped out of sequenc-
ing due to insufficient cDNA yield, leading to a failure 
in library preparation. Consequently, this sample was 
excluded from downstream RNA-seq analyses.

All paired-end raw reads were filtered and trimmed 
using Trimmomatic v0.38 [8] with the following param-
eters: LEADING:3 TRAILING:3 SLIDINGWIN-
DOW:4:15 MINLEN:75. FASTQC was used to ensure 
quality control [6]. Kraken2 was used to map and split 
reads to the Apis mellifera genome assembly Amel_
HAv3.1 (PRJNA471592) and the gut symbiont Com-
mensalibacter melissae (PRJNA495947) [72]. A. mellifera 
reads were mapped against A. mellifera genome using 
STAR v2.7.10b [30] and C. melissae reads were mapped 
to C. melissae genome using Bowtie 2 v2.5.2 [44]. Gene 
counts were obtained using Subread v2.0.4 package Fea-
tureCounts [45]. Genes with read counts below 4 were 
removed, and genes with variance less than 15% across 
samples were filtered out. Final counts were normal-
ized by employing a log2-counts per million (logCPM) 
transformation.

Quantitative real‑time PCR (qRT‑PCR)
To validate differentially expressed genes between ‘low’ 
and ‘high’ Commensalibacter groups we performed qPCR 
on a select group of genes. A cDNA template was gen-
erated from the purified RNA fraction. Briefly, RNA was 
converted into cDNA with Thermo Scientific RevertAid 
First Strand cDNA Synthesis Kit (Thermo Fisher Scien-
tific, Waltham, Massachusetts, United States) follow-
ing the manufacturer’s instructions. PCR reactions were 
performed using gene-specific primers and the follow-
ing protocol: initial denaturation at 95 °C for 5  min; 40 
cycles with denaturation at 95 °C for 15 s; and a com-
bined annealing and extension step at 58 °C for 30 s. 
The reactions were carried out using iTaqTM Univer-
sal SYBR® Green Supermix (Biorad, Hercules, Califor-
nia, US) in triplicate on an CFX96 TM Real-Time PCR 
Detection System (Biorad, Hercules, California, US). To 
confirm the absence of contaminant DNA and primer 
dimers, we used no-template controls made of water 
and analyzed melt-curves for each qPCR plate. Relative 
gene expression was calculated using the  2–∆∆Ct method 
[48] using both β-actin and RPS18 as reference genes 
[41]. Then the data were normalized with a log10 trans-
formation for downstream analyses. A list of primers 
used in this study is available in Table  S1. Primers not 
sourced from previous studies were designed with NCBI 
Primer-BLAST software (https:// www. ncbi. nlm. nih. gov/ 
tools/primer-blast/). Gene targets were selected from 
lists of differentially expressed genes between ‘low’ and 

https://www.ncbi.nlm.nih.gov/tools/
https://www.ncbi.nlm.nih.gov/tools/
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‘high’ Commensalibacter melissae groups for C. melissae 
and Apis mellifera genes.

Statistical analysis
A multivariate analysis of variance (MANOVA) was per-
formed on CLR-transformed data with OTUs 1 to 17 as 
dependent variables using SAS_v9.4 [40]. Using carbonyl 
to approximate age, we binned the queens into young and 
old categories, examining age as an independent variable. 
Normalized absolute abundance data were also analyzed 
by age using ANOVA. Normalized qRT-PCR results were 
analyzed using linear regression models in JMP v14.3.0 
(JMP_1989–2007), with gene expression as the depend-
ent variable and C. melissae relative abundance as the 
independent continuous variable. This approach allowed 
us to examine the continuous relationship between gene 
expression and symbiont abundance without relying on 
categorical binning. P values are reported for the signifi-
cance of the regression slope. A false discovery rate (FDR) 
was employed to account for multiple comparisons. We 
also conducted Pearson correlation analysis to examine 
the relationship between carbonyl levels and C. melissae 
relative abundance using JMP v14.3.0. The correlation 
coefficient (r) and associated p values were calculated to 
determine the strength and statistical significance of the 
relationship.

Differential gene expression analysis was performed 
with the Bioconductor package DESeq2 [49] in Expres-
sAnalyst [33]. We used source (AZ and IL) as a block-
ing variable for all downstream analysis. While filtered 
counts were used for differential expression analysis with 
DESeq2, normalized data was used only for downstream 
data visualizations. Differentially expressed genes (DEGs) 
were calculated based on contrasting groups; young ver-
sus old host age, or low versus high Commensalibacter 
relative abundance. Initially, carbonyl expression was 
used to bin queens into young and old and DEGs were 
calculated. Then, to emphasize the contrasting groups, 
the original dataset was reduced to 24: the 12 youngest 
and 12 oldest queens. Likewise, to quantify DEGs among 
queens with varied Commensalibacter relative abun-
dance, 24 were selected based on the following criteria: 
nine queens with high abundance >60% were compared 
to 15 queens with low <30% relative abundance. DEGs 
of Commensalibacter melissae were assessed within the 
same cohort of low and high Commensalibacter queens. 
To reduce the chance for type 1 errors in multiple 
hypothesis testing, we employed Benjamini–Hochberg 
method to correct for FDR. DEGs were considered sig-
nificant if the adjusted p value was < 0.05.

The list of DEGs were uploaded into the Database 
for Annotation, Visualization and Integrated Discov-
ery (DAVID) v2024q1 [39, 62] for functional annotation 

clustering analysis. We used the Apis mellifera genome 
(12,313 genes recognized by DAVID) as the background 
gene list against which enrichment was tested, with 
only 38 genes from our dataset not recognized by the 
database. DAVID employs a modified Fisher’s exact test 
(EASE score) to determine enrichment, comparing the 
proportion of genes in our list associated with a particu-
lar Gene Ontology (GO) term to the proportion in the 
background genome. We applied the Benjamini–Hoch-
berg procedure to control the false discovery rate, with 
an adjusted p value threshold of 0.05 for significance. The 
analysis grouped genes into GO terms, Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways, and Uni-
ProtKB (UniProt Knowledgebase) (UP) keywords (KW).

We used a heatmap to visualize DEGs with a hierarchi-
cal clustering analysis grouped with Ward’s clustering 
method, which groups queens and genes based on their 
similarity rather than their associated metadata label (age 
or Commensalibacter relative abundance) [29]. Normal-
ized RNA-seq counts were sub-selected from significant 
DEGs to create principal component analyses (PCA) 
based on our results from Ward’s clustering analysis.

Results
Microbial community analysis
PacBio sequencing returned 816,143 full-length 16S 
rRNA genes across 40 libraries from the hindguts of 
queens (Table  S2). The queens were binned into young 
(n = 20) and old (n = 20) groups based on carbonyl pro-
tein oxidation levels in fat body tissue, which served as 
a biomarker of biological aging. Bacteria were classified 
using the BEExact database to match the species level 
[27]. Libraries averaged 19.3 K reads and the number 
of OTUs went from 439 to 62 after OTUs were merged 
at the species level. After quality review and removal of 
contaminants, 16 OTUs were retained which accounted 
for 99.5% of all reads, while a 17 th OTU comprised 
of the remaining OTUs included the last 0.5%. The BEEx-
act database, initially identified our primary symbiont 
as Commensalibacter unknown. In a separate analysis, 
we performed a BLAST analysis of the full-length 16S 
rRNA gene sequence against the NCBI database, which 
revealed > 99% sequence identity to Commensalibacter 
melissae. Following the recent taxonomic designation by 
Botero and Vandamme [11], we use C. melissae through-
out this manuscript when referring to the previously 
known Alpha 2.1 symbiont. Approximately 73% of reads 
belonged to the gut symbionts C. melissae and Lactoba-
cillus panisapium (35.4% and 37.7%, respectively) (Fig. 1). 
A one-way MANOVA was performed on CLR-trans-
formed data with OTUs 1 to 17 as dependent variables. 
The MANOVA examined age as an independent variable 
(young vs old) and as a continuous variable with carbonyl 
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groups per mg of protein. Overall, the model was not 
significant for age (F ratio = 0.55, Pr > F = 0.1355). When 
considering only C. melissae, we found that its relative 
abundance was significantly different between young 
and old queens (F ratio = 4.7745 Prob > F = 0.0351; Fig-
ure S1) but not the absolute abundance (F ratio = 2.1849 
Prob > F = 0.1476; Figure S1). Pearson correlation analy-
sis was conducted to examine the relationship between 
carbonyl levels and C. melissae relative abundance across 
all queens. We found that the correlation was weak and 
not statistically significant (r = − 0.2497, p = 0.1203), 

suggesting that while categorical comparisons show sig-
nificant differences in C. melissae abundance between 
young and old queens, the relationship is more complex 
than a simple linear correlation when examined as con-
tinuous variables.

We compared the total bacterial abundance in the 
hindgut between young and old queens using qPCR 
quantification of 16S rRNA gene copies. Young queens 
had similar total bacterial loads (mean ± SE: 1.09E + 08 
± 1.44E + 07 16S rRNA gene copies) compared to old 
queens (mean ± SE: 1.34E + 08 ± 2.57E + 07 16S rRNA 

Fig. 1 Relative abundances of queen hindgut microbiotas. Color-coded bars represent relative abundance corrected by species-specific 16S 
rRNA gene copy number. All 40 queen samples binned within each age group (young and old) are arranged in descending C. melissae relative 
abundance to highlight the difference in C. melissae prevalence between young and old queens. The ‘Other’ category represents the sum of all 
bacterial taxa that contributed less than 0.5% to the total community abundance
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gene copies; p = 0.6650). This finding indicates that while 
the relative abundance of specific taxa like C. melissae 
changes with age, the overall size of the bacterial popula-
tion remains stable in the queen hindgut.

Overview of RNA‑seq data and differentially expressed 
genes analysis
On average, 18.3 million reads were generated from each 
queen host library across 12,356 genes (Table S3). Reads 
were also mapped to Commensalibacter melissae which 
averaged 2.3 million reads per library across 1839 genes 
(Table S4). On average, 75.15% of reads were mapped to 
the Apis mellifera genome [26, 71]. The remaining reads 
were bacterial (16.76%, 5.48% of which belonged to C. 
melissae), viral (1.27%), and fungal (0.08%) in origin.

For our RNA-seq analysis, we used two complemen-
tary approaches to categorize queens: We initially clas-
sified 39 queens as “young” or “old” based on protein 
carbonyl oxidation of fat body tissue, which serves as a 
validated biomarker of biological aging. Queens with 
carbonyl levels below 15.0 nmol/mg protein were clas-
sified as biologically"young"(n = 20), while those above 
this threshold were classified as biologically"old"(n = 19). 
This approach identified 680 differentially expressed 
genes (DEGs) (Table S5,  Padj < 0.05). Next we performed 
a refined age comparison. DEGs were inspected by prin-
cipal component analysis (PCA), which shows a clear 
separation of the samples based on chronological age 
(Fig.  2A). To enhance the contrast between distinctly 
young and old queens, we subsequently selected the 12 
queens with the lowest carbonyl levels (< 13.3 nmol/mg 
protein) as a refined  "young"  group and the 12 queens 
with the highest carbonyl levels (> 18.5 nmol/mg protein) 
as a refined "old" group. As expected from this selection 
approach, DESeq2 analysis of this subset showed more 
distinct separation between age groups, with 719 DEGs. 
(Table S6,  Padj < 0.05). For our analysis of age-associated 
gene expression patterns, we classified these clusters as 
representing  "youthful"  and  "aged"  transcriptional pro-
files. The list of DEGs were inspected by PCA, reveal-
ing tighter clustering of samples that aligned with age 
(Fig. 2B).

Next, to further investigate the relationship between 
C. melissae relative abundance and queen hindgut gene 
expression we selected 24 queens based on C. melissae 
relative abundance regardless of age: 9 queens with high 
abundance (> 60% relative abundance) and 15 queens 
with low abundance (< 30% relative abundance) (Figure 
S2). This comparison yielded 1451 DEGs (Table S7,  Padj < 
0.05). The PCA of C. melissae abundance clustered into 
two distinct ellipses (Fig.  2C). The clusters had unique 
highlights; queens that were biologically young with 
low C. melissae had aged gene expression patterns like 

old queens with low C. melissae. Two older queens had 
low C. melissae, but still had youthful gene expression 
like young queens. Finally, there was one old queen with 
high C. melissae relative abundance whose gene expres-
sion patterns were youthful and matched young queens 
with high C. melissae. A Venn diagram was constructed 
to examine the intersection between age-related and C. 
melissae abundance-related gene expression patterns 
(Fig.  2D) (Table  S8). Out of the 719 DEGS associated 
with age, 467 were expressed uniquely in the young ver-
sus old queen comparison. For C. melissae, 984 of the 
1451 DEGs were expressed uniquely in queens with low 
versus high C. melissae abundance. There were 252 DEGs 
shared between both analyses.

After examining the relationship between C. melissae 
abundance and queen gene expression patterns, we next 
investigated changes in the bacterium’s own gene expres-
sion. By analyzing RNA sequences mapped to the C. 
melissae genome, we identified bacterial genes that were 
differentially expressed between queens with low and 
high C. melissae abundance. This allowed us to examine 
how the bacterial transcriptome differs based on relative 
abundance and potentially identify metabolic functions 
or pathways in C. melissae that might influence queen 
physiology and contribute to the observed differences 
in host gene expression. DESeq2 analysis on C. melis-
sae mapped genes related to low and high C. melissae 
relative abundance resolved 9 DEGs after FDR correction 
(Table S9). Four out of nine genes coded for16S riboso-
mal RNA. The remaining five genes were TonB-depend-
ent receptor, BadF/BadG/BcrA/BcrD ATPase family 
protein, ribonuclease J, helix-turn-helix transcriptional 
regulator, and aldo/keto reductase.

Gene ontology terms and KEGG pathways
Functional annotation was performed on lists of DEGs 
for age and C. melissae relative abundance, including 
their shared and unique gene lists. In the comparison 
of young versus old queens, for GO terms, only cellular 
components had significant enrichment items; extracel-
lular region, membrane, and neuron protection (Fig. 3A). 
There were fewer significantly enriched UP KW for 
biological process (2: ion transport and membrane), 
molecular function (1: ion channel), post-translational 
modification (1: glycoprotein), and UP sequence features 
(1: TRANSMEM:Helical). The functional annotation of 
the number of DEGs resolved 164 genes under the GO 
term cellular components, 194 for the UP KW biologi-
cal process, 14 for UP KW molecular function, 39 for UP 
KW post-translational modification (PTM), and 162 for 
the UP KW sequence features (Table S10). The distribu-
tion of upregulated and downregulated genes (comparing 
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youthful to aged) across different functional categories is 
visualized in Fig. 3A below.

There were more significant enrichment items asso-
ciated with high versus low C. melissae relative abun-
dance compared to the age-based analysis (Fig. 3B). For 
GO terms, protein refolding was enriched for biologi-
cal process. Membrane, plasma membrane, and synapse 
for cellular components and calcium ion binding for 
molecular function. UP KW for biological process (2: 

stress response and ion transport), cellular component (1: 
membrane), molecular function (1: ion channel), and UP 
sequence features (4: transmembrane region of proteins 
that form helical structures, proteins that have a compo-
sitional bias towards polar amino acid residues, protein 
that lacks a fixed or ordered three-dimensional struc-
ture, and protein domains with an immunoglobulin-like 
fold). Additionally, C. melissae abundance was associ-
ated with significantly enriched KEGG pathway related 

Fig. 2 Principal component analysis of differentially expressed genes (DEGs). Clustered groups of points contain similar gene expression. Density 
ellipses cover 95% of plots for each group. Queens were classified as’young’or’old’based on carbonyl levels in fat body tissue, with a threshold 
of 15.0 nmol/mg protein separating the groups. A 680 DEGs associated with queen age (young vs old) of 39 queens. B 24 queens sub-selected 
for youngest versus oldest queens represent 719 DEGs using Ward’s clustering method. Open circle indicates an outlier queen who was biologically 
old, but showed gene expression patterns like young queens. C 24 queens sub-selected for low (< 30% relative abundance) and high (> 60% 
relative abundance) of gut symbiont Commensalibacter melissae represent 1451 DEGs using Ward’s clustering method. Open circles indicate queens 
whose expression patterns did not align with expectations: biologically young queens with low C. melissae had gene expression patterns like old 
queens; two old queens had low C. melissae, but gene expression like young queens; and one biologically old queen had high C. melissae, and gene 
expression like young queens. D Venn diagram showing the relationship between differentially expressed genes (DEGs) identified in our two main 
comparisons. The left circle represents the 719 DEGs found when comparing young versus old queens based on biological age (carbonyl levels). 
The right circle represents the 1451 DEGs found when comparing queens with high versus low C. melissae abundance. The overlap (252 shared 
DEGs) indicates genes affected by both age and C. melissae abundance, while the non-overlapping portions represent genes uniquely associated 
with either age (467 DEGs) or C. melissae abundance (984 DEGs)
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to evolutionarily conserved longevity-regulating mecha-
nisms identified across multiple model organisms. The 
functional annotation of the number of DEGs resolved 9 
genes under the GO term biological process, 406 for cel-
lular components, and 38 under molecular function. For 
UP KWs, we resolved 43 genes for biological process, 353 
for cellular components, 20 for molecular function, and 
1257 for sequence features (Table S11). The KEGG path-
way for longevity had 13 genes enriched.

Given the relationship between age and C. melissae 
relative abundance, we used a Venn diagram analysis 
to distinguish genes uniquely associated with each fac-
tor and those shared between them (Fig.  2D). The 467 
DEGs unique to age resolved one KEGG pathway under 

metabolic pathways for 37 genes (Table  S12). The 984 
DEGS unique to C. melissae showed significant enrich-
ment for the GO term response to heat under biologi-
cal process (7 genes) (Table  S13). Notably, the KEGG 
pathway for longevity, including the 13 genes remained 
associated with C. melissae abundance. The 252 DEGs 
that were shared between age and C. melissae showed 
functional annotation aligned with GO term membrane 
for cellular component (83 genes) and UP KW cellular 
component (118 genes) (Table  S14). UP KW biological 
process involving ion transport (14 genes) and UP KW 
molecular function ion channel (11 genes) were also 
enriched. UP KW PTM was enriched for glycoprotein 
(31 genes). Lastly, UP sequence features were enriched 

Fig. 3 The counts of upregulated and downregulated genes for gene ontology (GO), UniProtKB (UP), and KEGG pathways for differentially 
expressed genes comparing age and Commensalibacter melissae relative abundance. Stacked bar charts show only significantly enriched 
annotation categories with a p value < 0.05 after FDR correction. A Functional annotations of differentially expressed genes for young and old 
queens. B Functional annotations of differentially expressed genes for queens with low and high C. melissae relative abundance. Abbreviations: 
GT, Go Term; BIO PROC, Biological Process; MOLEC, Molecular Function; UP BIO PROC, UniProtKB Key Words Biological Process; UP CELL, UniProtKB 
Cellular Component; UP MOLEC, UniProtKB Molecular Function; UP PTM, UniProtKB Post-translational modification; UP_SEQ_FEAT, UniProtKB 
sequence features
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for transmembrane region of proteins that form helical 
structures (112 genes).

In summary, the functional annotation analysis 
revealed age-related DEGs were primarily associated 
with extracellular and membrane components, while 
C. melissae abundance-related DEGs showed a broader 
functional enrichment, including stress response, protein 
refolding, and longevity-related pathways. The KEGG 
pathway for longevity remained associated with C. melis-
sae abundance even when analyzing unique DEGs not 
shared with age effects.

qRT‑PCR validation of differentially expressed genes in C. 
melissae and A. mellifera
To further investigate the relationship between gene 
expression and C. melissae relative abundance, we per-
formed linear regression analysis on RT-qPCR results 
from selected genes. For C. melissae genes, TonB-
dependent receptor (p = 0.0001), NarK family nitrate/
nitrite MFS transporter (p = 0.0692), and Nitrate reduc-
tase subunit alpha (p = 0.0521) all showed positive corre-
lations with C. melissae relative abundance (Fig. 4A–C), 
indicating higher expression of these genes in queens 
with greater C. melissae abundance. These genes are 
involved in nutrient acquisition and nitrogen metabolism 
[51, 53], suggesting differences in bacterial metabolic 
activity across the gradient of C. melissae abundance.

For A. mellifera gene expression we observed signifi-
cant relationships with C. melissae abundance for several 
genes with established roles in oxidative stress response 
and aging processes. Catalase and Cu–Zn superoxide 
dismutase, both critical antioxidant enzymes that neu-
tralize reactive oxygen species [34], showed contrast-
ing patterns: catalase showed a negative correlation 
with C. melissae abundance (p = 0.0075), with higher 
expression in queens with lower C. melissae abundance 
(Fig.  4D), while Cu–Zn superoxide dismutase exhib-
ited a positive correlation with C. melissae abundance 
(p = 0.0207; Fig.  4E). The antimicrobial peptides defen-
sin 1 (p = 0.0434) and hymenoptaecin (p = 0.0521), 
involved in immune function which often changes with 
age [21], as well as dual oxidase (p = 0.0325) and nitric 
oxide synthase (p = 0.0521), which generate reactive oxy-
gen species and play roles in both immunity and aging, 

all showed negative correlations with C. melissae abun-
dance (Fig.  4F–I). Xanthine dehydrogenase, involved in 
purine metabolism and reactive oxygen species genera-
tion, showed no significant relationship with C. melissae 
abundance (p = 0.7323; Fig. 4J), despite significance as a 
DEG. These patterns suggest that queens with higher C. 
melissae abundance tend to express lower levels of genes 
involved in antimicrobial defense and certain aspects of 
oxidative stress response, potentially reflecting differ-
ences in physiological state associated with variation in 
gut microbiome composition.

Discussion
There are many examples of gut symbionts providing 
beneficial host effects including longevity [14, 17, 38]. 
In this study, we highlight contributions to longevity of 
the honey bee queen gut symbiont Commensalibacter 
melissae by combining 16S rRNA gene sequencing and 
transcriptomics. Our findings suggest that C. melissae 
relative abundance in the hindgut of honey bee queens 
is associated with significant changes in gene expression 
relative to age alone, with specific transcriptional pat-
terns reflecting known models of longevity.

The microbial community analysis showed C. melissae 
(Alpha 2.1) and Lactobacillus panisapium (Firm-5) domi-
nated the queen microbiome, comprising approximately 
73% of the total hindgut microbiota. This is consistent 
with previous studies demonstrating these two groups/
species as major contributors to the native queen gut 
microbiome [3, 42, 66]. Interestingly, while the relative 
abundance of C. melissae differed significantly between 
young and old queens, the absolute abundance did not, 
suggesting that the proportion of C. melissae in the gut 
community, rather than its absolute numbers, may be 
more relevant to queen health. In general, young queens 
had more of their microbiome dedicated to C. melissae 
than older queens (Fig.  1), confirming previous find-
ings that C. melissae relative abundance depletes with 
age [3]. The mechanism for why queens lose C. melis-
sae and its implications are still currently unknown, but 
may be driven by age-related changes to queen physiol-
ogy and the gut environment. C. melissae belongs to the 
group of acetic acid bacteria (AAB) that form symbioses 
with insects, which typically thrive in acidic pH and with 

(See figure on next page.)
Fig. 4 Regression analysis of gene expression versus C. melissae relative abundance. Each panel shows the relationship between gene expression 
(y-axis) and C. melissae relative abundance (x-axis) for selected genes from C. melissae (A–C) and A. mellifera (D–J). Expression values are normalized 
to β-actin and RPS5 reference genes using the 2 − ΔΔCT method and log-transformed. Points are colored according to the scheme in Fig. 2C 
showing youthful and aged categories with their respective outlier queens. Red lines show linear regression fits with corresponding p values shown 
in each panel. A TonB-dependent receptor, B NarK family nitrate/nitrite MFS transporter, C Nitrate reductase subunit alpha, D Catalase, E Cu–Zn 
superoxide dismutase, F Defensin 1, G Dual oxidase, H Hymenoptaecin, I Nitric oxide synthase, J Xanthine dehydrogenase
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Fig. 4 (See legend on previous page.)
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access to diet-derived carbohydrates [25]. Alterations in 
pH could result in a less hospitable environment to C. 
melissae over time, instead, supporting the growth of 
other symbionts like Lactobacillus and Bifidobacterium 
which increase with age [3]. Another explanation for 
the depletion of C. melissae with age could be a change 
in queen immune function, perhaps resulting in a queen 
becoming less tolerant of C. melissae. The immune sys-
tem undergoes senescence with many changes through-
out an organism’s lifespan which is reflected in youthful 
versus aged gene expression (Fig. 2).

Commensalibacter melissae relative abundance 
and RNA‑seq
Transcriptomic analysis uncovered substantial differ-
ences in gene expression patterns between young and 
old queens, as well as between queens with high and low 
C. melissae abundance. Our study confirmed that young 
queens typically have higher C. melissae relative abun-
dance, however, gene expression patterns did not show 
complete correspondence with either age or bacterial 
abundance. The principal component analyses (Fig.  2) 
display distinct clustering of gene expression profiles 
based on both age and C. melissae abundance. Notably, 
the gene expression patterns associated with C. melis-
sae abundance showed greater separation than those 
associated with age alone, suggesting that the gut sym-
biont abundance may have a more pronounced effect on 
queen physiology than age itself. In the analysis of age 
(Fig. 2B), we identified one high-performing queen with 
youthful gene expression signatures despite being more 
advanced in age. The analysis of C. melissae revealed 
three queens whose gene expression profiles diverged 
from expectations based on their age and bacterial abun-
dance (Fig.  2C). Young queens with low C. melissae 
abundance exhibited gene expression patterns similar to 
older queens, suggesting an association between reduced 
symbiont abundance and age-related gene expression 
profiles, although the causal relationship remains to be 
determined. We found a similar result for queens relo-
cated to a queen bank; an environment of low metabolic 
demand [20]. Our observations help explain why some 
young queens show reduced performance despite their 
age. Studies with Drosophila provide interesting paral-
lels to our observations in honey bee queens. Similar to 
honey bees, the microbiota of fruit flies change in abun-
dance and composition throughout aging [3, 12, 17]. 
Like honey bee queens, Drosophila aging research has 
revealed intriguing relationships with native Acetobac-
teraceae, including species of Gluconobacter, Acetobac-
ter, and Lactobacillus [4]. However, a critical unknown 
in both systems is how bacterial products interact with 
host tissues. The physical proximity between bacterial 

populations and host cells necessary for metabolite sign-
aling remains poorly understood. Thus, more research 
regarding the metabolites and host-microbe interactions 
of C. melissae and A. mellifera are needed.

Even among its insect-adapted sister genera (or  ’con-
geners’), C.melissae appears uniquely derived and spe-
cialized, possessing both a reduced genome (having lost 
several pathways) and an excess of species-specific gene 
clusters [10]. In observation of aligned C. melissae genes, 
there were 9 DEGs shared  between queens with low 
and high C. melissae abundance (Table  S9), which may 
influence queen longevity through various mechanisms. 
For example, the differential expression of the TonB-
dependent receptor gene suggests changes to microbial 
nutrient acquisition capabilities [53]. Efficient nutrient 
uptake and metabolism are crucial for maintaining cellu-
lar health and function over time. The upregulation of the 
TonB-dependent receptor in queens with high C. melis-
sae abundance might mean they perform more efficient 
nutrient utilization, specifically the uptake of various 
siderophores, vitamins, and carbohydrates. The differ-
ential expression of the BadF/BadG/BcrA/BcrD ATPase 
family protein gene, which is involved in metabolite 
transport [28], suggests that C. melissae may modulate 
the metabolic environment of the queen’s gut by facili-
tating the import or export of specific metabolites. Aldo/
keto reductases are involved in various metabolic pro-
cesses and stress responses, including the detoxification 
of reactive aldehydes and ketones that can accumulate 
with age [7]. Upregulation of this gene in queens with 
high C. melissae abundance could enhance stress resist-
ance and detoxification capabilities for the host. There 
were several DEGs involved in ribosome function (16S 
rRNA genes), RNA processing (Ribonuclease J), and gene 
regulation (helix-turn-helix transcriptional regulator), 
which suggests that C. melissae may influence funda-
mental cellular processes. Maintaining efficient protein 
synthesis and gene regulation is important for cellular 
homeostasis and could contribute to slowing the aging 
process.

The elevated expression of NarK family nitrate/
nitrite MFS transporter and nitrate reductase subu-
nit alpha in youthful queens with high C. melissae 
abundance suggests a potential role in nitrogen recy-
cling within the queen hindgut. NarK transporters are 
crucial for nitrate/nitrite transport across bacterial 
membranes [51], while nitrate reductase catalyzes the 
reduction of nitrate to nitrite [35], a key step in nitro-
gen metabolism. While it may be tempting to draw 
parallels with nutritional symbioses, several critical 
considerations challenge this interpretation. Unlike 
intracellular symbionts such as Blattabacterium in 
cockroaches or Buchnera in aphids, Commensalibacter 
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sp. resides in the hindgut, physically separated from 
sites of nutrient absorption in the midgut. Without 
evidence of specialized transport mechanisms or gut 
chambers, the simplest explanation is that these nitro-
gen-metabolizing genes support bacterial metabo-
lism rather than host nutrition. A more parsimonious 
hypothesis is that C. melissae uses host nitrogenous 
waste products as metabolic substrates, potentially 
influencing the succession of other gut microbes such 
as lactic acid bacteria. The decreased expression of 
these nitrogen-metabolizing genes in aged queens with 
lower C. melissae abundance might reflect changes in 
bacterial metabolism that accompany microbial suc-
cession in the aging gut. This is further supported by 
our finding that total bacterial abundance remains 
stable between young and old queens, despite the sig-
nificant shift in community composition. This suggests 
that as queens age, the ecological niche occupied by C. 
melissae may be filled by other bacterial taxa, poten-
tially altering the nitrogen metabolism dynamics in 
the hindgut. The constant overall bacterial population, 
coupled with changing relative abundances, indicates 
that microbial succession rather than overall bacte-
rial depletion characterizes the aging queen gut. These 
patterns suggest that C. melissae may be particu-
larly well-adapted to the gut environment of younger 
queens, with its metabolic activities potentially con-
tributing to their physiological state.

The observations of two older queens with low C. 
melissae abundance and one old queen with high 
C. melissae abundance all displaying youthful gene 
expression patterns suggest complex interactions 
between multiple factors affecting queen quality. 
While our study focused on gut symbionts, queen 
quality and longevity are known to be influenced by 
other aspects including nutrition, mating success, 
colony conditions, seasonal effects, and environmen-
tal stressors. These high-performing older queens 
demonstrate that the relationship between Commen-
salibacter sp. and queen physiology is not strictly lin-
ear or deterministic. While there is a clear association 
between C. melissae abundance and youthful gene 
expression, the exceptions to this pattern indicate that 
queen quality is modulated by multiple interacting fac-
tors. These likely include colony-level factors such as 
worker population and resource availability, environ-
mental conditions such as temperature and seasonal 
variation, and other members of the gut microbiome. 
This complexity aligns with previous research showing 
that queen quality cannot be reduced reliably to a sin-
gle factor but rather emerges from the interaction of 
multiple biological and environmental variables.

Commensalibacter melissae relative abundance and Apis 
mellifera differentially expressed genes
Functional annotation of Apis mellifera DEGs provide 
further insights into the biological processes affected by 
aging and C. melissae. In the age-associated DEGs, we 
observed enrichment of genes involved in the extracel-
lular region, membrane, and neuron protection (Fig. 3C). 
The number of DEGs associated with C. melissae abun-
dance doubled those of age, and showed enrichment 
across a broader range of categories and functions, 
including protein refolding, stress response, ion trans-
port, and calcium ion binding. The enrichment of stress 
response genes is interesting, as it implies that C. melis-
sae may influence queens’stress response mechanisms. 
Notably, there were 13 DEGs significantly enriched for 
the KEGG pathway in longevity-regulating pathways, 
suggesting that C. melissae relative abundance may influ-
ence queen longevity through modulation of these genes. 
Specifically, genes that encompass a range of functions 
critical to cellular stress response, metabolism, and lon-
gevity regulation. Among these genes, catalase (Cat) and 
superoxide dismutase [Cu–Zn] (SOD) are noteworthy as 
they play crucial roles in the antioxidant defense system. 
These enzymes are responsible for neutralizing reactive 
oxygen species (ROS), which are implicated in cellular 
damage and aging [34, 37]. Catalase converts the ROS 
hydrogen peroxide to water and oxygen and was lower 
in youthful queens with high C. melissae abundance sug-
gesting lower levels of oxidative stress. Conversely, Cu–
Zn SOD, which catalyzes the dismutation of extremely 
unstable superoxide radicals to hydrogen peroxide and 
molecular oxygen [46], was highest in youthful queens. 
The elevated expression of Cu–Zn SOD in queens with 
high C. melissae abundance likely reflects higher levels of 
intracellular mitochondrial activity—as increased energy 
production generates more ROS, necessitating increased 
Cu–Zn SOD expression. The lower catalase expression 
in these queens suggests that despite higher metabolic 
activity, they may be managing ROS more efficiently at 
the superoxide stage. This pattern indicates that C. melis-
sae abundance correlates with queens maintaining high 
metabolic activity while effectively managing oxidative 
stress.

The heat shock proteins (Hsp70 Ab-like, Hsc70-4, and 
multiple lethal  (2)  essential for life variants) identified 
in the KEGG pathway analysis of A. mellifera DEGs are 
crucial for protein folding and cellular stress responses 
[68]. The induction of heat-shock proteins, particularly 
Hsp70, has been associated with aging and proteostatic 
stress across various model systems [43] as well as with 
honey bees [63]. Transcripts were highest in queens with 
low C. melissae abundance, suggesting that they may 
be experiencing higher levels of proteostatic stress. The 
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increased expression of heat shock proteins could repre-
sent a compensatory mechanism attempting to maintain 
protein homeostasis in the face of age-related cellular 
stress or the absence of protective effects modulated by 
the presence of C. melissae. Furthermore, the presence 
of multiple lethal (2) essential for life variants among the 
differentially expressed genes is particularly intriguing. 
These genes, which are homologs of the human HSPA1 
A (Heat Shock 70 kDa Protein 1A), are crucial for cellular 
survival under stress conditions [64]. Their lower expres-
sion in queens with high C. melissae abundance could 
indicate a reduced need for these stress-response mech-
anisms, possibly due to a more stable cellular environ-
ment promoted by the presence of the symbiont. These 
findings align with the concept of hormesis, where mild 
stress can lead to improved stress resistance and longev-
ity [55]. It’s possible that C. melissae provides a low level 
of beneficial stress or stimulates protective pathways in 
the host, leading to improved stress resistance without 
the need for constant high expression of stress response 
genes. This could result in a more efficient use of cellular 
resources and potentially contribute to the exceptional 
longevity of honey bee queens.

Study limitations
Several important limitations of this study should be 
acknowledged. First, these findings are correlational 
in nature, and we cannot establish causal relationship 
between C. melissae abundance and queen physiology or 
gene expression patterns. Future research should attempt 
experimental manipulations of the queen microbiome 
through feeding monocultures and/or creating germ-free 
queens. Second, our focus on C. melissae raises the ques-
tion of whether this specific symbiont is uniquely influ-
ential, or if other community members that change with 
age might play equally important roles. While our data 
show that C. melissae relative abundance correlates most 
strongly with the gene expression changes we identified, 
the reciprocal increase in Lactobacillus and other taxa 
as C. melissae decreases could also influence host physi-
ology. Disentangling these possibilities would require 
selective removal and reintroduction of specific micro-
bial community members. Third, our sampling approach 
captured a single timepoint in a queen’s lifespan, thus 
limiting our ability to track true longitudinal changes in 
microbiome composition and gene expression. Fourth, 
while carbonyl accumulation serves as a useful bio-
marker for biological age, it represents only one aspect 
of the complex aging process. Finally, the use of categori-
cal comparisons, while valuable for identifying distinct 
gene expression profiles, may not fully capture the con-
tinuous and potentially non-linear relationships between 
microbiome composition, age, and gene expression. 

Future work must employ a combination of experimen-
tal manipulations, longitudinal sampling, and additional 
aging biomarkers to tease apart the complex relation-
ships between the gut microbiome, queen longevity, and 
quality.

Conclusion
The findings from this study provide novel insights into 
the role of the honey bee queen gut symbiont, Commen-
salibacter melissae (C. melissae), in modulating queen 
physiology. Our results suggest that the relative abun-
dance of C. melissae in the queen hindgut is intimately 
associated with distinct gene expression patterns, which 
diverge more strongly based on symbiont abundance 
than age alone. Younger queens typically harbor higher 
relative abundances of C. melissae compared to older 
queens. While this suggests a potential relationship 
between C. melissae abundance and aging processes, 
further experimental studies are needed to determine 
whether changes in microbial composition are a cause or 
consequence of aging in queens. The occurrence of gene 
expression profiles that do not align with chronological 
age suggests a complex, non-linear relationship of the 
queen hindgut microbiome with host age. In conclusion, 
the queen aging appears to be intimately linked to the 
presence and relative abundance of the gut symbiont C. 
melissae. Further investigation into the specific mecha-
nisms underlying this relationship could provide valuable 
insights into the regulation of aging in social insects.
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